Mathias-Prikry and Laver-Prikry type forcing

نویسندگان

  • Michael Hrusák
  • Hiroaki Minami
چکیده

We study the Mathias-Prikry and Laver-Prikry forcings associated with filters on ω. We give a combinatorial characterization of Martin’s number for these forcing notions and present a general scheme for analyzing preservation properties for them. In particular, we give a combinatorial characterization of those filters for which the Mathias-Prikry forcing does not add any dominating reals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathias-Prikry and Laver type forcing; summable ideals, coideals, and +-selective filters

We study the Mathias–Prikry and the Laver type forcings associated with filters and coideals. We isolate a crucial combinatorial property of Mathias reals, and prove that Mathias–Prikry forcings with summable ideals are all mutually bi-embeddable. We show that Mathias forcing associated with the complement of an analytic ideal does add a dominating real. We also characterize filters for which t...

متن کامل

A minimal Prikry-type forcing for singularizing a measurable cardinal

Recently, Gitik, Kanovei and the first author proved that for a classical Prikry forcing extension the family of the intermediate models can be parametrized by Pp!q{finite. By modifying the standard Prikry tree forcing we define a Prikry-type forcing which also singularizes a measurable cardinal but which is minimal, i.e. there are no intermediate models properly between the ground model and th...

متن کامل

A remark on subforcings of the Prikry forcing

We will show that every subforcing of the basic Prikry forcing is either trivial or isomorphic to the Prikry forcing with the same ultrafilter. Let κ be a measurable cardinal and U a normal ultrafilter over κ. We will denote by P (U) the basic Prikry forcing with U . Let us recall the definition. Definition 0.1 P (U) is the set of all pairs 〈p,A〉 such that 1. p is a finite subset of κ, 2. A ∈ U...

متن کامل

The short extenders gap two forcing is of Prikry type

We show that Gitik’s short extender gap-2 forcing is of Prikry

متن کامل

Prikry on Extenders, Revisited

We present a modification to the Prikry on Extenders forcing notion allowing the blow up of the power set of a large cardinal, change its cofinality to ω without adding bounded subsets, working directly from arbitrary extender (e.g., n-huge extender). Using this forcing, starting from a superstrong cardinal κ, we construct a model in which the added Prikry sequences are a scale in the normal Pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 165  شماره 

صفحات  -

تاریخ انتشار 2014